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ABSTRACT
Regression testing ensures the correctness of the software during
its evolution, with special attention on the absence of unintended
side-effects that might be introduced by changes. However, the
manual creation of regression test cases, which expose divergent
behavior, needs a lot of effort. A solution is the idea of shadow
symbolic execution, which takes a unified version of the old and
the new programs and performs symbolic execution guided by
concrete values to explore the changed behavior.
In this work, we adapt the idea of shadow symbolic execution
(SSE) and combine complete/standard symbolic execution with
the idea of four-way forking to expose diverging behavior. There-
fore, our approach attempts to comprehensively test the new be-
haviors introduced by a change. We implemented our approach
in the tool ShadowJPF+, which performs complete shadow sym-
bolic execution on Java bytecode. It is an extension of the tool
ShadowJPF, which is based on Symbolic PathFinder. We applied
our tool on 79 examples, for which it was able to reveal more di-
verging behaviors than common shadow symbolic execution. Ad-
ditionally, the approach has been applied on a real-world patch
for the Joda-Time library, for which it successfully generated test
cases that expose a regression error.
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1. INTRODUCTION
Real-world software evolves in order to catch up with a continu-
ously changing environment, which makes it necessary to fix incor-
rect behavior or introduce new functionality. These changes are
usually denoted as patches. However, patches bare the risk to in-
troduce new errors [6, 16]. To mitigate this risk, regression testing
is used to explore the changed behavior, which was introduced by
the applied patches. Regression testing cannot verify the absence
of errors, but it can provide confidence that the patches follow
their intention. Several regression testing techniques [7, 5] select
and run a subset of the test cases from the program’s existing test
suite or automatically generate test cases with high coverage of
the changed code [11]. However, full statement or branch cover-
age achieved by the set of regression test cases may not lead to
the desired divergence revealing test inputs.

Recently, Palikareva et al. [13] have introduced a dynamic sym-
bolic execution-based technique, which they refer to as shadow
symbolic execution (SSE). Instead of generating a high-coverage
test suite, their technique is designed to generate test inputs that
reveal new program behaviors introduced by a patch. SSE exe-

cutes both the old (buggy) and new (patched) versions in the same
symbolic execution instance, with the old version shadowing the
new one. Therefore, it is necessary to merge both programs into a
change-annotated, unified version. Based on such a unified version
and driven by the idea of four-way forking, the technique detects
divergences along the execution path of an input that exercises
the patch. However, if an execution path does not immediately
expose a divergence, it may no longer be explored. While this ap-
proach significantly reduces the program search space by pruning
a large number of execution paths, it might miss divergences that
could expose regression errors.

In this work we present the combination of complete symbolic
execution with the idea of four-way forking for the generation of
regression test cases. This approach tries to test the new program
version more comprehensively by exhaustively exploring the exe-
cution tree in order to detect divergences that expose new program
behavior. We implemented our approach as an extension of the
tool Symbolic PathFinder (SPF) [14], called ShadowJPF+, which
performs SSE on Java bytecode and is able to effectively generate
divergent test cases on a unit level. Therefore, we extended our
SSE implementation for Java bytecode, called ShadowJPF [12].
The main contributions of this work are:

1. The combination of complete symbolic execution with the
idea of four-way forking, as a technique to generate regres-
sion tests that expose changed program behavior.

2. The tool ShadowJPF+ as an extension of the ShadowJPF.

3. The application of ShadowJPF+ on various examples, in-
cluding a patch for the Joda-Time library in order to eval-
uate its test case generation capabilities. Furthermore, our
approach is compared to ShadowJPF to assess the effective-
ness of our improved search exploration strategy.

2. BACKGROUND AND MOTIVATION
2.1 Symbolic Execution
The key idea behind symbolic execution [9, 3] is to run a program
with symbolic input values instead of concrete ones. The values of
the program variables as well as the output values are expressed
as symbolic expressions over the symbolic input. As a result, the
behavior of a program can be described as a symbolic execution
tree, where the nodes represent (symbolic) program states and the
edges represent the program transitions. A symbolic state S is
defined as tuple (σ, PC, IP), where σ is a mapping from variables
to symbolic expressions, PC is the current path condition and IP
denotes the instruction pointer to the next instruction. A path



condition is a conjunction of constraints over the symbolic inputs,
which must be satisfied in order to follow a particular execution
path. The mapping σ needs to be updated at each assignment ac-
cordingly. The path condition gets updated at every conditional
statement and gets checked with a constraint solver for its sat-
isfiability. Symbolic execution has been implemented by several
tools, which support different programming languages and target
different applications [2]. For our evaluation we focus on Sym-
bolic PathFinder (SPF) [14], which combines symbolic execution
with model checking, also called generalized symbolic execution,
on Java bytecode, and which has been applied in academia as well
as in the industry. SPF is based on the Java PathFinder (JPF)
[15] and extends and overwrites certain bytecode instructions in
order to enable symbolic execution of Java bytecode.

2.2 Shadow Symbolic Execution
Palikareva et al. [13] introduced shadow symbolic execution (SSE)
as symbolic execution-based technique that aims to reveal be-
havioral differences between two program versions, and hence,
find newly introduced regression bugs. Specifically, their tech-
niques searches for divergences between a buggy version (also de-
noted as old version) and a subsequent, patched version (also
denoted as new version) that fixes the previous known bug. By
using initial test inputs from an existing test suite they dynam-
ically execute both versions in the same symbolic execution in-
stance. Therefore, [13] manually transforms the two versions
into one change()-annotated program by applying simple anno-
tation rules. Each change() annotation represents a function call
change(oldExpression, newExpression), where the arguments
show the old and the new expressions respectively.

1 int foo( int x){
2 int y;
3 i f (x < 0){
4- y = -x;
4+ y = x * x;
5 } else {
6 y = 2 * x;
7 }

8+ y = y+1;
9 i f (y > 1){

10 return 0;
11 } else {
12 i f (y == 1)
13 assert( fa l se );
14 }
15 return 1;
16 }

Listing 1: Motivating Example.

As an example Listing 1
shows the function foo.
The modification in line
4 can be unified as:

y=change(-x,x*x).

The addition in line 8
can be unified as:

y=change(y,y+1),

in which an addition
can be simulated as a
modification from the
dummy assignment y=y

to y=y+1. The presented
changes in Listing 1 rep-
resent a patch for the
method foo() that fixes
the assertion error (line
13) for x=-1, but it introduces a regression bug with a new asser-
tion error for x=0. The desired result would be two test inputs
that trigger changed behavior: one for the fixed path, and one for
the regression bug. Figure 1 shows the complete four-way forking
symbolic execution tree for the unified version of the program in
Listing 1. The approach by [13] is driven by the concrete inputs
to limit the search space, and hence, it will explore only a subset
of the shown symbolic states (depending on the used test inputs).

They perform a dynamic symbolic execution on the unified pro-
gram in two steps: (1) detect possible divergences along a concrete
path (denoted as concolic phase), and (2) from the discovered di-
vergence points it performs a bounded symbolic execution (BSE)
on the new program version only. During the concolic phase,
branching instructions, like if-statements, are handled in special
way: instead of forking the execution in two executions for the true
and the false branch, SSE applies the notion of a four-way forking

to investigate all four combinations of true and false branches for
both program versions. As long as the concrete executions take
the same decisions at the branching instructions, SSE follows the
so-called sameTrue/False path, however, at each branching in-
struction SSE also checks the feasibility of the diff x paths as part
of the four-way forking. As long there is no concrete divergence,
SSE continues until the end of the program. As soon as SSE
hits an addition or a removal of straightline code, which is repre-
sented by the change annotations if(change(false, true)) and
if(change(true, false)), it immediately triggers a divergence
point. This leads to an over-approximation of the diff paths be-
cause the added / deleted code may not necessarily lead to an
actual divergence. Their tool Shadow is implemented on top of
the KLEE symbolic execution engine [1], in the remainder of the
paper we will refer to it as ShadowKLEE.

2.3 Need for further Research
In particular, there are two limitations in the exploration strategy
of [13] that we want to address.

Deeper divergences might be missed in the BSE phase: The
BSE phase of [13] aims to find additional test inputs that trigger
divergent behavior by exploring the execution tree of the new
version starting from each divergence point found in the concolic
phase. This implies that each BSE run inherits the path condi-
tion prefix from the initial input from the start to the divergence
point. For example in Listing 1, for the input x=-1, which fully
covers the changed statements, [13] would only generate the test
case representing the fixed path and it would miss the path with
the new introduced assertion error. The reason for that is that
the collected path condition prefix limits the exploration space of
BSE. The collected path condition up to line 9 is: X < 0. In
order to get to the assertion error in line 13 with the new version,
BSE needs to follow the false branch at line 9 with the condi-
tion: (X2 + 1 ≤ 1), which is only possible for X = 0, but this
contradicts with the current path condition (X < 0) (cf. node
2 in Figure 1). With this precondition [13] cannot find the new
introduced assertion error.

The initial input has to cover potential divergence points:

1 int bar( int x, int y){
2 int z = change(x,y);
3 i f ((x+y) == 5){
4 i f (z == -100)
5 assert( fa l se );
6 }
7 return 0;
8 }

Listing 2: Limitation example.

Since the concolic phase
of [13] only searches
for divergences along the
path of a concrete in-
put that exercises the
patch, divergences along
alternative paths will be
missed if there is no sat-
isfiable divergence at the
branching point. This
means that if the concrete input does cover the changed state-
ments, but does not cover the potential divergence point, then
[13] is not able to find the diff path. In the program in Listing 2
a potential divergence can happen only in line 4 because it is the
only condition that depends on a changed variable. The condition
in line 3 is never a divergence point because the variables in the
condition are not affected by the patch. To discover the diver-
gence, the initial input has to actually reach line 4, meaning that
any initial input x and y with x+y 6= 5 would miss the divergence
because concrete execution would follow only the false branch of
the conditional statement in line 3 and discard the other paths.

3. APPROACH
In order to tackle the limitations discussed in Section 2.3, we fol-
low a conservative approach that executes the change-annotated



[PCold, PCnew : true]
x = X

0

[PCold : true]
[PCnew : true]

3 : X < 0 ?

1

[PCold : (X < 0)]
[PCnew : (X < 0)]

SAT [x < 0]
9old : −X > 1 ?

9new : X2 + 1 > 1 ?

2

[PCold : (X < 0) ∧ (−X > 1)]
[PCnew : (X < 0) ∧ (X2 + 1 > 1)]

SAT [x ≤ −2]
10both : return 0;

3

[PCold : (X < 0) ∧ (−X ≤ 1)]
[PCnew : (X < 0) ∧ (X2 + 1 ≤ 1)]

UNSAT
4

[PCold : (X < 0) ∧ (−X ≤ 1)]
[PCnew : (X < 0) ∧ (X2 + 1 > 1)]

SAT [x = −1]
13old : Assertion Error

10new : return 0;

5

[PCold : (X < 0) ∧ (−X > 1)]
[PCnew : (X < 0) ∧ (X2 + 1 ≤ 1)]

UNSAT
6

[PCold : (X ≥ 0)]
[PCnew : (X ≥ 0)]

SAT [x ≥ 0]
9old : 2X > 1 ?

9new : 2X + 1 > 1 ?

7

[PCold : (X ≥ 0) ∧ (2X > 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 > 1)]

SAT [x ≥ 1]
10both : return 0;

8

[PCold : (X ≥ 0) ∧ (2X ≤ 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 ≤ 1)]

SAT [x = 0]
12old : 2X == 1 ?

12new : 2X + 1 == 1 ?

9

[PCold : (X ≥ 0) ∧ (2X ≤ 1) ∧ (2X == 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 ≤ 1) ∧ (2X + 1 == 1)]

UNSAT
10

[PCold : (X ≥ 0) ∧ (2X ≤ 1) ∧ (2X 6= 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 ≤ 1) ∧ (2X + 1 6= 1)]

UNSAT
11

[PCold : (X ≥ 0) ∧ (2X ≤ 1) ∧ (2X 6= 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 ≤ 1) ∧ (2X + 1 == 1)]

SAT [x = 0]
16old : return 1

13new : Assertion Error

12

[PCold : (X ≥ 0) ∧ (2X ≤ 1) ∧ (2X == 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 ≤ 1) ∧ (2X + 1 6= 1)]

UNSAT
13

[PCold : (X ≥ 0) ∧ (2X ≤ 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 > 1)]

UNSAT
14

[PCold : (X ≥ 0) ∧ (2X > 1)]
[PCnew : (X ≥ 0) ∧ (2X + 1 ≤ 1)]

UNSAT
15

[PCold : (X ≥ 0)]
[PCnew : (X < 0)]

UNSAT
16

[PCold : (X < 0)]
[PCnew : (X ≥ 0)]

UNSAT
17
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Figure 1: Complete four-way forking symbolic execution tree for the combined execution of the old and the new
versions of the program in Listing 1. Each node represents a state in the symbolic search space, where each state
holds the combined information of the old and the new symbolic executions.

program with bounded symbolic execution and four-way forking
in a depth first manner, while detecting divergences on the fly.
That is, instead of searching for divergences only along the path
of a concrete input, the execution is forked into four different
paths at each branching point (samefalse , sametrue , difffalse and
difftrue). The symbolic execution tree in Figure 1 represents ex-
actly the states being explored by our approach. As soon as the
executions of the two program versions diverge, i.e., we start with
the exploration of a diffx path, the execution of subsequent condi-
tional statements forks execution into two paths based on the exe-
cution of the new version only. Nevertheless, since we also explore
paths where both program versions do not yet diverge (samefalse
and sametrue paths), it is possible to detect divergences at every
depth of the execution path. As soon as the execution terminates
or a user-specified depth is reached, we check if the current path
exercised divergent program behavior (i.e., if the path is a diff
path) and generate a concrete test input in that case.

Adding and removing straightline code: In [13], the special
case of adding and removing straightline code is handled by us-
ing the annotations like if(change(false,true)), which imme-
diately trigger a diff path and terminate SSE, even though both
versions might still exhibit the same branching behavior. Our
approach continues SSE in this case, but only updates the sym-
bolic information of the respective version. This is done by using
the separately handled annotation if(execute(version)){...},
where version denotes the program version of the enclosed code
(OLD or NEW). Any conditional statement inside such a code block
forks execution into two separate paths based on the symbolic val-
ues of the specified version only. A divergence inside an if(exec-

ute(version)) block is only possible if it contains a return state-
ment, i.e., if the particular program version returns early. There-
fore, our handling of added/removed code blocks is more precise
as it does not lead to spurious divergences.

Implementation: We implemented our approach in ShadowJPF+

by augmenting our preliminary work on ShadowJPF [12] with our
new ideas on the search heuristic. In particular, we extended
the implementation of the conditional bytecode instructions (e.g.,
IFEQ, IF_ICMPGT) such that the execution is forked into four paths
(or two paths, while exploring a diff path). The arithmetic byte-

code instructions (e.g., IADD, IINC) have also been updated to
specifically support the newly introduced if(execute(version))

annotation. The execution of ShadowJPF+ on the program pre-
sented in Listing 1 results in the two test inputs x=-1 and x=0
(cf. Table 3) for the expected diff paths, which fits in with the
four-way forking symbolic execution tree in Figure 1.

Directed Exploration: Our basic approach will explore unchang-
ed paths, i.e. paths without any change-annotation, until the very
end, where it will eventually prune them because they do not rep-
resent a diff path. This can slow down the symbolic exploration,
which should only explore paths that can truly reach a changed
statement. Therefore, we propose an optimization, which com-
bines complete shadow symbolic execution with directed sym-
bolic execution. We leverage the existing work on control-flow
guided symbolic exploration strategies [10] to limit our explo-
ration to paths that can reach a changed statement only. We
added this directed exploration as an optional extension to our
tool ShadowJPF+, since the computation overhead for the ICFG
might not be worthwhile for some smaller applications.

4. EVALUATION
Our implementation and all evaluation artifacts are available on
GitHub: https://github.com/hub-se/jpf-shadow-plus.
We evaluated our approach with the following research questions:
RQ.1: Can ShadowJPF+ reveal more divergent behaviors than
ShadowJPF?
RQ.2: How does ShadowJPF+ compare to ShadowJPF in terms
of performance?
RQ.3: Can ShadowJPF+ expose real-world regression bugs?

Subjects: We selected the following software artifacts as our ex-
perimental subjects from the official SPF repository1 (with the
corresponding LOC): Rational.abs (30), Rational.gcd (40), Ratio-
nal.simplify (51), WBS.update (234) and WBS.launch (242) and
generated in total 79 mutants with the Major mutation frame-
work [8] (similar as [12]) with the following change types: Re-
lational Operator Replacement (ROR), Operator Replacement
Unary (ORU), Arithmetic Operator Replacement (AOR) and State-
ment Deletion (STD). Since Major only generated single mutants

1https://github.com/SymbolicPathFinder/jpf-symbc

https://github.com/hub-se/jpf-shadow-plus
https://github.com/SymbolicPathFinder/jpf-symbc


per class, we manually combined a randomly chosen subset of
them to get complex mutants with multiple changes per class. Ad-
ditionally, we inspected several open source projects on GitHub
to find real regression bugs. In the Joda-Time library we found
the issue #3282, which fixes a regression bug that was introduced
with the fix for the issue #1903.

Subject Type Time [s] # States # Paths (diff)
SJ SJ+ SJ SJ+ SJ SJ+

Rational.abs 1 ROR <1 <1 21 32 1 1
Rational.abs 2 ROR <1 <1 21 32 1 1
Rational.abs 3 ROR <1 <1 13 20 1 1
Rational.abs 4 ORU <1 <1 5 6 0 0
Rational.abs 5 ORU <1 <1 5 6 0 0
Rational.gcd 1 ROR <1 <1 42 220 0 0
Rational.gcd 2 ROR <1 <1 23 48 2 4
Rational.gcd 3 ROR <1 <1 40 234 3 3
Rational.gcd 4 STD <1 <1 43 223 3 3
Rational.gcd 5 ROR <1 <1 27 174 1 2
Rational.gcd 6 ROR <1 <1 27 610 1 2
Rational.gcd 7 ROR <1 <1 87 692 1 16
Rational.gcd 8 STD inf inf - - - -
Rational.gcd 9 ROR <1 <1 45 434 0 0
Rational.gcd 10 ROR <1 <1 57 626 3 48
Rational.gcd 11 ROR <1 <1 15 42 1 2
Rational.gcd 12 ROR <1 <1 104 308 3 6
Rational.gcd 13 ROR <1 <1 104 642 3 14
Rational.gcd 14 ROR <1 <1 43 236 1 6
Rational.gcd 15 AOR <1 <1 43 178 4 10
Rational.gcd 16 AOR <1 <1 39 170 4 10
Rational.gcd 17 AOR <1 1 60 342 8 36
Rational.gcd 18 STD <1 <1 37 166 2 6
Rational.gcd 19 AOR <1 4 49 198 5 18
Rational.gcd 20 AOR <1 <1 49 198 5 18
Rational.gcd 21 AOR 1 94 83 386 9 34
Rational.gcd 22 STD <1 <1 49 198 5 18
Rational.simplify 1 ROR <1 <1 55 284 4 6
Rational.simplify 2 ROR <1 <1 63 370 3 3
Rational.simplify 3 ROR <1 <1 71 252 4 6
Rational.simplify 4 ORU <1 <1 28 280 2 8
Rational.simplify 5 ROR <1 <1 42 364 0 1
Rational.simplify 6 ROR <1 <1 31 96 3 7
Rational.simplify 7 ROR <1 <1 63 366 4 4
Rational.simplify 8 STD <1 <1 19 355 1 4
Rational.simplify 9 ROR <1 <1 31 222 1 3
Rational.simplify 10 ROR <1 <1 73 770 1 3
Rational.simplify 11 ROR <1 <1 67 588 1 17
Rational.simplify 12 STD inf inf - - - -
Rational.simplify 13 ROR <1 1 45 578 0 1
Rational.simplify 14 ROR <1 <1 61 898 3 49
Rational.simplify 15 ROR <1 <1 15 74 1 3
Rational.simplify 16 ROR <1 <1 104 388 3 7
Rational.simplify 17 ROR <1 <1 104 674 3 15
Rational.simplify 18 ROR <1 <1 34 280 1 7
Rational.simplify 19 AOR <1 <1 47 274 4 11
Rational.simplify 20 AOR <1 <1 43 266 4 11
Rational.simplify 21 AOR <1 1 72 550 8 37
Rational.simplify 22 STD <1 <1 37 246 2 7
Rational.simplify 23 AOR <1 6 49 230 5 19
Rational.simplify 24 AOR <1 <1 49 230 5 19
Rational.simplify 25 AOR <1 95 83 418 9 35
Rational.simplify 26 STD <1 <1 49 230 5 19
Rational.simplify 27 AOR <1 <1 29 338 0 1
Rational.simplify 2 16 ROR2 <1 <1 138 420 6 9
Rational.simplify 2 27 ROR,AOR <1 <1 63 370 3 3
Rational.simplify 3 11 ROR2 <1 <1 108 368 3 12
Rational.simplify 16 27 ROR,AOR <1 <1 104 388 3 7
Rational.simplify 2 16 27 ROR2,AOR <1 <1 138 420 6 9

Table 1: Experimental results for the Rational subjects.

ShadowJPF needs initial test inputs, so we generated test inputs
that each test case covers at least one change-statement, similar
to the assumption in [13]. For ShadowJPF+ we do not need these
concrete inputs. We added the change-annotations to the mutants
and executed them with both: ShadowJPF and ShadowJPF+.
Afterwards, we manually compared the resulting path conditions.
For our experiments we disabled the guided symbolic exploration
because due to the small sizes of the mutated subjects it did not
provide any time benefit.

2https://github.com/JodaOrg/joda-time/issues/328
3https://github.com/JodaOrg/joda-time/issues/190

Subject Type Time [s] # States # Paths (diff)
SJ SJ+ SJ SJ+ SJ SJ+

WBS.update 1 ROR8 <1 1 70 880 2 24
WBS.update 2 ROR8 <1 <1 73 428 2 12
WBS.update 3 ROR7,AOR <1 <1 51 554 2 24
WBS.update 4 ROR6,AOR,STD <1 <1 97 618 4 18
WBS.update 5 ROR7,AOR <1 <1 109 266 6 12
WBS.update 6 ROR8 <1 <1 135 632 6 24
WBS.update 7 ROR6,AOR,STD <1 <1 123 618 6 28
WBS.update 8 ROR5,AOR2, STD <1 <1 147 232 8 8
WBS.update 9 ROR5,AOR2, STD <1 <1 89 576 4 12
WBS.update 10 ROR7,AOR <1 <1 118 914 4 7

WBS.launch 1 ROR8 4 121 11724 281080 576 13824
WBS.launch 2 ROR8 <1 2 1083 12944 36 432
WBS.launch 3 ROR7,AOR 7 120 20701 248354 1152 13824
WBS.launch 4 ROR6,AOR,STD 3 47 10208 111876 628 5472
WBS.launch 5 ROR7,AOR <1 1 1717 3506 111 222
WBS.launch 6 ROR8 11 76 32508 195176 1600 9600
WBS.launch 7 ROR6,AOR,STD 7 146 22414 313930 1152 16128
WBS.launch 8 ROR5,AOR2, STD 2 14 7313 15232 512 896
WBS.launch 9 ROR5,AOR2, STD 3 56 7585 143819 745 7109
WBS.launch 10 ROR7,AOR 30 193 48460 497118 2404 15204

Table 2: Experimental results for the WBS subjects.

Subject Time [s] # States # Paths (diff)
SJ SJ+ SJ SJ+ SJ SJ+

Foo <1 <1 11 18 1 2
Joda-Time <1 <1 37 40 9 (6) 6

Table 3: Experimental results for the motivating example
and the presented Joda-Time regression bug.

Infrastructure: The experiments were conducted on a machine
with macOS 10.14.6 (2.9GHz Intel Core i5, 16 GB RAM). As
constraint solver for the symbolic execution we use Z3 [4] with
the version 4.5.0. We used Java v1.8.0 211 and configured the
symbolic execution with an unbounded depth limit and a timeout
of one hour.

4.1 Results and Analysis
Tables 1 and 2 show the detailed results of the mutant evalua-
tion for the Rational and WBS subjects. The first column names
the corresponding class and method that were tested together
with an id, which specifies each mutant. Column Type con-
tains the mutation change type. The following columns describe
the execution time in seconds, the number of visited states dur-
ing the symbolic exploration, and the number of resulting path
conditions for ShadowJPF (SJ) and our extension ShadowJPF+

(SJ+). Table 1 contains two mutations (Rational.gcd 8 and Ra-
tional.simplify 12), for which the mutated version results in an
infinite loop, hence, we marked them with inf and omitted them
from the analysis. We also present in Table 3 the detailed execu-
tion results for the method foo() from Listing 1 and the Joda-
Time regression bug.

RQ.1 Effectiveness: In order to answer RQ.1 we compared the
number of test cases, i.e., resulting path conditions, identified by
ShadowJPF and ShadowJPF+ (see Table 1, 2, and 3). In almost
all cases ShadowJPF+ was able to identify the same or a greater
number of diff paths than ShadowJPF. The exception is the re-
sult for the subject Joda-Time, for which ShadowJPF identified
9 diff paths and ShadowJPF+ identified 6 diff paths. However,
ShadowJPF is affected by the over-approximation mentioned in
Section 2.2, and hence, it identifies incorrectly three paths as diff
paths. For the rest, ShadowJPF is often limited by the concrete
values, which constraint the current path condition at a diver-
gence point. Therefore, ShadowJPF+ can identify significantly
more diff paths and at the same time is more accurate because
it mitigates the over-approximation problem. Note that in our
experiments, ShadowJPF+ was able to find all possible diff paths
(except for the subjects marked with inf ), since there was no
further bound on the exploration depth.

https://github.com/JodaOrg/joda-time/issues/328
https://github.com/JodaOrg/joda-time/issues/190


RQ.2 Performance: In order to answer RQ.2 we compared
the run-time and the number of visited states during exploration,
which ShadowJPF and ShadowJPF+ needed to identify the diff
paths (see Table 1, 2, and 3). Due to the complete four-way
symbolic execution, ShadowJPF+ needs in general more symbolic
states than ShadowJPF. The run-time strongly depends on the
number of explored states, and hence, on the size of the generated
path conditions. Therefore, also the used constraint solver has a
strong influence on the run-time, but with Z3 we are using one
of the state-of-the-art constraint solvers. Needing more states in
exploration, and hence a longer run-time, is the trade-off one has
to decide on if a more accurate regression analysis is targeted.

RQ.3 Exposing Real-World Regression Bugs: In order to
show that ShadowJPF+ can expose real-world regression bugs we
applied our approach on a patch in Joda-Time, which introduced
a regression bug. The ZonedChronology class in Joda-Time con-
tains a method localToUTC(), which allows to convert a local
instant to a standard UTC instant with the same local time. An
instant object stores the number of milliseconds from the standard
Java epoch of 1970-01-01T00:00Z. Prior to a patch, the method
would calculate the UTC instant by subtracting the appropriate
time offset from the local instant. A possible overflow caused by
this operation was not specifically handled by the method. A
patched version was supposed to fix this behavior by checking for
an overflow. However, this patch introduced a regression bug that
would cause the method to return wrong results under certain cir-
cumstances. Some minor refactorings had to be applied to make
the program ready for our symbolic analysis. ShadowJPF+ gen-
erated 6 test inputs that trigger a divergent behavior, from which
4 divergences were expected based on the patch. However, two
divergences are unexpected (i.e., unintended introduced semantic
changes), and hence, represent a regression bug.

5. CONCLUSION & DISCUSSION
In this work, we presented an approach to generate test inputs
exposing the divergences between two program versions. We pro-
vided a complementary exploration strategy to the existing tech-
nique by [13] and implemented ShadowJPF+ as an extension of
the ShadowJPF tool. In order to evaluate the effectiveness of our
approach, we performed experiments on 79 generated mutants
and compared the results with ShadowJPF. Additionally, we ap-
plied our approach on a patch for the Joda-Time library to show
the capability to expose real-world regression bugs. We acknowl-
edge that for the real-world applicability of regression testing it is
very important to reduce the search space of symbolic execution
to improve its scalability. Nevertheless, it is important to find
the appropriate balance between keeping the search space practi-
cable and still finding all crucial regression bugs. Our approach
is more accurate and more precise than ShadowJPF, but more
computational expensive. In future we plan to address this dis-
advantage by combining ShadowJPF+ with other techniques in a
hybrid analysis approach.
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