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ABSTRACT

A popular metric to evaluate the performance of fuzzers is branch
coverage. However, we argue that focusing solely on covering many
different branches (i.e., the richness) is not sufficient since the ma-
jority of the covered branches may have been exercised only once,
which does not inspire a high confidence in the reliability of the
covered code. Instead, the distribution of the executed branches
(i.e., the evenness) should also be considered. That is, behavioral
diversity is only given if the generated inputs not only trigger
many different branches, but also trigger them evenly often with
diverse inputs. We introduce BeDivFuzz, a feedback-driven fuzzing
technique for generator-based fuzzers. BeDivFuzz distinguishes
between structure-preserving and structure-changing mutations in
the space of syntactically valid inputs, and biases its mutation strat-
egy towards validity and behavioral diversity based on the received
program feedback. We have evaluated BeDivFuzz on Ant, Maven,
Rhino, Closure, Nashorn, and Tomcat. The results show that Be-
DivFuzz achieves better behavioral diversity than the state of the
art, measured by established biodiversity metrics, namely the Hill
numbers, from the field of ecology.
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1 INTRODUCTION

Traditionally, fuzzing tools (e.g., [9, 26, 33, 34, 43, 47, 53]) have
been used to evaluate the software under test (SUT) with respect
to security and robustness properties. Typically, vulnerabilities are
found by feeding the SUT malformed inputs, potentially resulting
in unexpected program behavior, which can be identified using
e.g., memory and safety oracles [29, 37, 41]. Since most of the
vulnerabilities emerge due to incorrect handling of unexpected
inputs, security-oriented fuzzers usually target the input parsing
and processing stages of the SUT. Recently, there is a trend [3, 32,
35, 45, 51, 54] to use fuzzers to test the actual core functionality of
the SUT, rather than the early input processing stages only. The
challenge of testing the core functionality of a program that expects
complex structured inputs is mainly due to the following problems:

(1) The input must be syntactically valid (i.e., conform to the
expected structure/type) in order to be parseable by the SUT.

(2) The input must satisfy any additional semantic validity con-
straints (e.g., assertions or repOk methods [27]) to actually
reach the core program functionality.

(3) The generated inputs must exhibit some sort of diversity in
order to trigger diverse behavior.

The techniques targeting this problem typically rely on an input
specification (e.g., a grammar) that describes the expected input
structure to produce inputs of the expected format. Generator-
based fuzzers like Zest [32] follow an imperative approach, where
the tester implements a generator program that is able to produce
syntactically valid inputs. Zest uses code coverage and validity
feedback to search for inputs that exercise many different branches
in the semantic analysis stages of the SUT. That is, the goal of Zest
is to cover as much of the semantic program behavior as possible.
A more recent technique, RLCheck [35], utilizes reinforcement
learning to automatically guide the generator towards high input
diversity, i.e., inputs that exercise different traces. However, while
RLCheck is able to produce a large number of diverse inputs that
trigger specific behaviors, it fails to cover many different behaviors.

We are interested in a technique that is able to not only cover
many different behaviors, but also test these behaviors in a diverse
manner. That is, we aim for an even distribution of exercised be-
haviors, rather than focusing our testing effort solely on particular
behaviors. A simplified illustration of this idea can be found in
Figure 1. In the figure, the grey areas in the input space represent
the valid inputs (i.e., inputs that trigger the core functionality of the
SUT), whereas the white areas represent other invalid inputs (e.g.,
inputs that only trigger error handling code). Traditional fuzzers
like AFL [53], as depicted in Figure 1.a, tend to produce malformed
inputs and hence only cover a small proportion of the valid be-
havior. Further, the distribution of the triggered valid behavior
mostly concentrates on the more likely branches. On the other
hand, validity-focused fuzzers like Zest and RLCheck (cf. Figure
1.b) either only focus on covering many different behaviors (but
not their diverse execution, indicated by grey areas with a low
concentration of green crosses) or disproportionally test particular
behaviors only (indicated by the small areas with a high number of
green crosses). Our proposed technique, BeDivFuzz (cf. Figure 1.c),
avoids this problem by searching for many different valid inputs
while evenly testing the behaviors in a diverse manner.

In particular, BeDivFuzz distinguishes between structure-changing
and structure-preserving mutations. Performing structure-changing
mutations allows to search for new program behavior that is only
triggered if the input satisfies particular structural properties. In
contrast, the structure-preserving mutations allow to target spe-
cific behavior of the code with different variants of the same input
structure, effectively testing the targeted behavior in a diverse man-
ner. BeDivFuzz uses an adaptive mutation strategy that utilizes
the received program feedback to guide the search towards high
behavioral diversity. In order to determine the behavioral diversity
of a fuzzing campaign, we propose a novel metric that incorporates
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Figure 1: Illustrative simplified motivation for BeDivFuzz. In the input space, the white and grey areas represent invalid and

valid input areas for the SUT, respectively. The green crosses represent valid test inputs, while the red crosses represent invalid

inputs. In line with [39], we use branch hit counts and call frequencies as an illustrativemetric to represent the behavior space.

both the number of covered branches and the branch execution
distribution over all unique traces.

Novelty and Contributions. Overall, we provide the following
key contributions:
• We present BeDivFuzz, a novel fuzzing approach that generates
valid and behaviorally diverse inputs.
• We propose to utilize Hill numbers [17], a common metric
for species diversity from ecology, to quantify the behavioral
diversity of the covered branches by a fuzzing campaign.
• We evaluate BeDivFuzz based on several fuzzing campaigns
with XML and JavaScript SUTs, namely Ant, Maven, Closure,
Rhino, Nashorn, and Tomcat.
• We provide the source code of BeDivFuzz and a replication
package of our results at https://github.com/hub-se/BeDivFuzz.

Significance of the Contributions. We provide a novel metric
that quantifies the behavioral diversity of a fuzzing campaign and
propose a technique that improves upon the current state-of-the-art
w.r.t. to that metric. The proposed metric shifts the focus of simply
covering many behaviors (i.e., branch coverage) to diversely testing
many different behaviors. Thus, it will potentially serve as a stepping
stone towards future systematic evaluations of a SUT with respect
to reliability and correctness after the termination of a fuzzing
campaign [6, 7], as desired in practical software engineering.

1 def generate_tree(depth =0):
2 value = random.randint(0, 10)
3 tree = BinaryTree(value)
4 if depth >= MAX_DEPTH:
5 return tree
6 if random.choose ([True , False]):
7 tree.left = generate_tree(depth +1)
8 if random.choose ([True , False]):
9 tree.right = generate_tree(depth +1)
10 return tree

Figure 2: A simple binary tree generator. Adapted from [35].

2 BACKGROUND

2.1 Generator-Based Fuzzing

Fuzzing (also known as fuzz testing) attempts to find bugs and
crashes in software through random input generation. A common
challenge in fuzzing is to produce test inputs for programs that ex-
pect complex structured inputs (e.g., compilers). Effectively testing
these types of programs is challenging due to the following reasons:
(i) The generated inputs must be syntactically valid in order to be
successfully parsed by the program. (ii) The input must also satisfy
any additional semantic validity constraints in order to actually
exercise the SUT’s core functionality. (iii) The test inputs have to be

https://github.com/hub-se/BeDivFuzz
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diverse enough to execute a variety of different program behavior.
Structure-aware fuzzers typically approach this problem by utilizing
domain-specific knowledge about the expected input type or format.
One way to provide this knowledge to the fuzzer is via a declara-
tive input specification (e.g., a grammar [2, 14, 16, 18, 30, 39, 48]).
Alternatively, the tester may write an imperative generator pro-
gram that randomly samples syntactically valid inputs, an approach
known as generator-based fuzzing [19, 31, 32]. For example, Fig-
ure 2 shows the pseudocode for a generator that produces random
binary trees, which will serve as the running example throughout
the paper. The function generate_tree first samples a random
integer value between 0 and 10 (Line 2) to instantiate the root node
(Line 3). If a user-defined maximum depth has been reached, the
generated node is returned (Lines 4–5). Otherwise, the generator
non-deterministically decides whether to generate left and right
child nodes, in which case generate_tree is recursively called
(Lines 6–9). The output of the generator thus depends on the se-
quence of random choices made during the generation process. In
the example, the sequence of random choices precisely determines
the shape of the binary tree and all the tree node values. As a con-
crete example, consider the following random choice sequence for
the call of generate_tree (MAX_DEPTH = 5):

Random choice→ result Context

random.randint→ 3 Root: node value (Line 2)
random.choose→ False Root: generate left child? (Line 6)
random.choose→ False Root: generate right child? (Line 8)

This sequence of random choices would result in a ”binary-tree”
consisting of a single root node with the value 3 and no child nodes:

3

To give a different example, consider the following choice sequence:

Random choice→ result Context

random.randint→ 3 Root: node value (Line 2)
random.choose→ True Root: generate left child? (Line 6)
random.randint→ 5 Left child: node value (Line 2)
random.choose→ False Left child: gen. left child? (Line 6)
random.choose→ False Left child: gen. right child? (Line 8)
random.choose→ True Root: generate right child? (Line 8)
random.randint→ 7 Right child: node value (Line 2)
random.choose→ False Right child: gen. left child? (Line 6)
random.choose→ False Right child: gen. right child? (Line 8)

The corresponding binary tree consists of a root node with the
value 3 and leaf nodes with the values 5 and 7 as the left and right
child, respectively:

3

5 7

A typical challenge in generator-based testing arises when the
input is expected to satisfy complex semantic validity constraints
that are not explicitly considered by the generator. To continue

the current example, the SUT may expect the generated tree to
be sorted (e.g., a binary search tree) or height-balanced (e.g., an
AVL tree). In this case, random input sampling is usually not very
effective as most of the generated inputs will be rejected by the SUT.
Instead, recent techniques bias the generator towards producing
valid inputs by directly controlling the random choices made during
the input generation process.

Zest [32] relies on the fact that the implementation of random
number generators usually depends on a pseudo-random source of
untyped bits, which Padhye et al. refer to as parameters. Specifically,
random values of a particular type are generated by consuming
and interpreting a fixed number of parameters. For instance, a ran-
dom boolean value may be sampled by consuming one bit from the
source of untyped parameters, which is then interpreted as False if
it is zero and otherwise as True. The pseudo-random nature of this
method ensures that using the same random seed always generates
the same sequence of parameters. For a given generator, this will
produce the same sequence of random choices, effectively resulting
in the same generated input. On the other hand, by mutating the
untyped parameter sequence, the sequence of random choices can
be altered, which corresponds to complex structural mutations in
the input domain. For example, mutating the parameters that are
consumed by the first call to random.randint() (Figure 2, Line 2)
results in the value of the root node to be mutated. Similarly, mu-
tating the parameters corresponding to a call to random.choose()
(Line 6) may change the decision on whether a left child node will
be generated. As a result, by controlling the sequence of parameters,
it is possible to directly control the output of the input generator.
Zest [32] exploits this insight by performing a feedback-directed
parameter search to guide the generators towards high coverage
in the semantic analysis stages. Contrary, RLCheck [35] employs
reinforcement learning to automatically learn a guide that leads the
generator to produce diverse valid inputs (w.r.t. a validity function).

2.2 Hill-Numbers

In the field of ecology, researchers are interested in quantifying
the biodiversity of an assemblage based on a sample of species. A
commonly used class of diversity metrics are the Hill numbers [17].
The Hill numbers consider both species richness (i.e., the total num-
ber of different species) and species abundances (i.e., the number
of individuals per species) in a sample, and are defined as follows:

Definition 2.1 (Hill number of order 𝑞). Let 𝑆 be the species rich-
ness and 𝑝𝑖 the relative abundance of the 𝑖-th species in the dataset.
The Hill number of order 𝑞 is defined as (𝑞𝐷 is the original notation):

𝑞𝐷 = 𝐷 (𝑞) =
(

𝑆∑︁
𝑖=1

𝑝
𝑞

𝑖

)1/(1−𝑞)
(1)

For 𝑞 = 1, Equation 1 is undefined, but its limit for 𝑞 → 1 corre-
sponds to the exponential of the Shannon(-Wiener) index [38, 40]:

1𝐷 = 𝐷 (1) = lim
𝑞→1

𝑞𝐷 = exp

(
−

𝑆∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖

)
(2)

The order𝑞 determines the sensitivity of themetric to the relative
species abundances, where typically measures for 𝑞 ∈ {0, 1, 2}
are reported. For 𝑞 = 0, the relative species abundances are not
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considered at all and 𝐷 (0) corresponds to the total number of
species in the dataset (i.e., the richness). For 𝑞 = 1, the species are
weighted in proportion to their relative abundances, which is why
𝐷 (1) can be interpreted as the effective number of ”typical” species.
For 𝑞 = 2, more weight is given to the most abundant species and
the rarer species are discounted. As a result,𝐷 (2) can be interpreted
as the effective number of ”common” or dominant species.

3 APPROACH

In this section, we first describe our approach to extend generator-
based fuzzing with the ability to produce more behaviorally diverse
inputs (Section 3.1–3.3). Then, we introduce a novel metric to quan-
tify the behavioral diversity of a fuzzing campaign based on Hill
numbers (Section 3.4).

3.1 Overview

The key idea of our approach can be summarized as follows:
(1) We search for interesting input structures in the space of

valid inputs through structure-changing mutations.
(2) We produce different variants of the same input structure

by applying structure-preserving mutations with the goal of
exploring diverse execution traces.

To bias the input generation towards high behavioral diversity,
we observe the coverage and validity feedback from the program
after every execution and adapt the mutation strategy accordingly.

3.2 Structural Parameter Splitting

As described in Section 2.1, the non-determinism of the input gen-
eration process is entirely controlled by the sequence of random
choices made. Our first insight is that the choices can be classi-
fied into two different types: structural choices and value choices,
depending on their influence on the control-flow behavior of the
generator. Based on the notion of a choice point by Reddy et al. [35],
we define these choice types as follows:

Definition 3.1 (Structural and Value choices). Let the choice point
𝑝 be a tuple (ℓ,𝐶), where ℓ ∈ L is a program location in the gener-
ator 𝐺 and 𝐶 ⊆ C is a finite domain of choices. The choice point
𝑝 is said to produce structural choices if the evaluation of a branch
condition at some point during the execution of 𝐺 depends on the
choice 𝑐 ∈ 𝐶 . Otherwise, 𝑝 is said to produce value choices.

For example, the choice point 𝑝1 = (Line 2, [0, 1, ..., 10])
in Figure 2 produces value choices, since no branch condition in
generate_tree depends on that choice. On the other hand, both
choice points 𝑝2 = (Line 6, [True, False]) and 𝑝3 = (Line 8, [True,
False]) produce structural choices, since the corresponding choices
directly influence the branching behavior of the generator 𝐺 (i.e.,
the decision on whether to generate child nodes or not).

Based on this insight, our first idea is to split the sequence of
untyped parameters into two distinct parameter sequences based
on the choice type they are used for:

(1) A structural parameter sequence to be consumed by structural
choice points.

(2) A value parameter sequence to be consumed by value choice
points.

That is, we can now represent each input as a tuple (𝜎𝑠 , 𝜎𝑣), where
𝜎𝑠 and 𝜎𝑣 represent the structural and value parameters consumed
by the input generator, respectively. To further illustrate this idea,
consider the following binary tree:

3

5 7

The corresponding parameter sequence𝜎 (shown as typed choice
values for the sake of simplicity) is given by:

𝜎 = 3, True, 5, False, False, True, 7, False, False

Here, the structural choices consists of all the boolean and the
value choices of all the integer values. Therefore, we can represent
this parameter sequence by the following two distinct sequences:

𝜎𝑠 = True, False, False, True, False, False

𝜎𝑣 = 3, 5, 7

This change in how the parameters for a generator are handled is
a key idea of our approach, since it gives us access to the following
operations and concepts.

First, it enables us to perform more controlled mutations on the
input. In particular, by mutating the structural parameter sequence,
we can directly mutate the structural choices made during the
input generation process. By definition, the change of structural
choices eventually results in a change of the control-flow behavior
in the generator, which typically produces an input with a different
structure. For example, if we consider the binary tree generator from
Figure 2, mutating the structural parameters changes the boolean
decisions on the generation of child nodes. On the other hand, by
mutating the value parameters only, the control-flow behavior of
the generator is preserved, yet different value choices are sampled.
In the case of the binary tree generator, mutating value parameters
results in mutated choices for the node values, while keeping the
shape of the binary tree unmodified. Overall, the access to these
structure-changing and structure-preserving mutations allows us
to explore the input space in a more controlled manner.

The second benefit of separating the structural and value pa-
rameters is that it allows us to synthesize an abstract input from a
concrete input:

Definition 3.2 (Abstract Input, Structural Signature). Let 𝑖 be an
input generated by a generator𝐺 , 𝜎𝑠 = 𝑐𝑠1 , 𝑐𝑠2 , . . . , 𝑐𝑠𝑛 be the corre-
sponding sequence of structural parameters, and𝜎𝑣 = 𝑐𝑣1 , 𝑐𝑣2 , . . . , 𝑐𝑣𝑚
be the corresponding sequence of value parameters made by𝐺 dur-
ing the generation of 𝑖 . The abstract input 𝐴(𝑖) of the input 𝑖 is
the input that is obtained by setting all value parameters in 𝜎𝑣
as unspecified (or symbolic), while fixing the concrete structural
parameters 𝜎𝑠 . The sequence of concrete structural parameters 𝜎𝑠
is called the structural signature of 𝐴(𝑖).

Intuitively, the abstract input represents the structural skeleton
of the input, which may be concretized by specifying the missing
value parameters. In our running example, the abstract input of
a generated binary tree would correspond to a binary tree with
the same shape but unspecified node values. As an example, for
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the above described tree, the abstract input 𝐴(𝑡) fixes the struc-
tural parameters 𝜎𝑠 and leaves the value parameters 𝜎𝑣 unspecified
(𝑐𝑣1 , 𝑐𝑣2 , 𝑐𝑣3 ), i.e.:

𝑐𝑣1

𝑐𝑣2 𝑐𝑣3

𝜎𝑠 = True, False, False, True, False, False

𝜎𝑣 = 𝑐𝑣1 , 𝑐𝑣2 , 𝑐𝑣3

The structural signature (i.e., the sequence of structural parameters
𝜎𝑠 ) of 𝐴(𝑡) thus describes the set of all binary trees consisting
of three nodes: a root node that is connected to two child nodes
where each node has a value between 0 and 10 (the domain of the
choice point 𝑝1 = (Line 2, [0, 1, ..., 10])). Since we represent
each input as a tuple (𝜎𝑠 , 𝜎𝑣), we can easily check whether two
inputs share the same abstract input by comparing their structural
signatures. This is another crucial aspect of our approach, as this
property allows us to reason about the explored input space on a
higher level. In particular, our approach uses the concept of abstract
inputs in order to identify interesting input structures that exercise
new behavior.

3.3 Feedback-Driven Search Strategy

The fuzzing algorithm of BeDivFuzz is presented in Algorithm 1. It
is based on the coverage-guided Zest algorithm for generator-based
fuzzing, and is extended by integrating the concepts of structural
parameter splitting and abstract input structures. In particular, the
two key components of the BeDivFuzz algorithm consist of:

(1) An adaptive mutation strategy that biases input generation
towards high behavioral diversity, and

(2) A fuzzing heuristic that guides the search strategy based on
the structural properties of the input.

We highlight these main innovations in Algorithm 1 in grey.
Similar to Zest (and other coverage-guided fuzzers), we maintain

a queue 𝑄 of interesting inputs, which is initially seeded with a
random value (Line 1). While Zest operates on single parameter
sequences 𝜎 , BeDivFuzz operates on tuples (𝜎𝑠 , 𝜎𝑣) of split parame-
ter sequences. For the sake of brevity, in the remainder of this paper
we will use the term parameters when referring to tuples (𝜎𝑠 , 𝜎𝑣)
of split parameter sequences. Throughout the fuzzing campaign,
the algorithm maintains basic bookkeeping data, such as the set
of failing parameters and the current branch coverage (Lines 2–3).
Additionally, BeDivFuzz keeps track of all unique coverage traces
(Line 4) and the set of interesting abstract input structures (Line 5).
The set of unique coverage traces is used to adaptively bias the
mutation strategy, described in more detail at the end of this sec-
tion. The set of abstract input structures is utilized by BeDivFuzz
to guide the search within the space of valid inputs.

The main fuzzing loop (Lines 6–19) has the same structure as
other coverage-guided fuzzers, described as follows: First, a pa-
rameter sequence is selected from the queue (Line 7), after which
the number of child parameters is determined (Line 8). We use
the same heuristic as Zest, which computes the number of child

Algorithm 1: BeDivFuzz Algorithm
Input :program 𝑝 , generator 𝑔
Output :a set of test inputs, a set of failing inputs

1 𝑄 ← {random} /* Initial seed input */

2 𝐹 ← ∅ /* Failing parameters */

3 𝐶 ← ∅ /* Total coverage */

4 𝑇 ← ∅ /* Unique traces */

5 𝑆 ← ∅ /* Interesting valid input structures */

6 repeat

7 for (𝜎𝑠 , 𝜎𝑣 ) in𝑄 do

8 for 1 ≤ 𝑖 ≤ numChildren(𝜎𝑠 , 𝜎𝑣 ) do
9 𝜎̃𝑠 , 𝜎̃𝑣 ← mutateAdaptive(𝜎𝑠 , 𝜎𝑣 )

10 input ← 𝑔 (𝜎𝑠 , 𝜎𝑣 )
11 coverage, result ← run(𝑝, input)
12 if result = Failure then /* Save failures */
13 𝐹 ← 𝐹 ∪ {(𝜎𝑠 , 𝜎𝑣 ) }
14 else /* Check if input has interesting structure */
15 if result = Valid and coverage ⊈ 𝐶 and 𝜎𝑠 ∉ 𝑆 then

16 𝑄 ← 𝑄 ∪ {(𝜎𝑠 , 𝜎𝑣 ) } /* Add to queue */

17 𝑆 ← 𝑆 ∪ {𝜎𝑠 } /* Add saved structure */

18 updateCoverageStats(coverage, result,𝐶,𝑇 )
19 until given time budget expires
20 return 𝑔 (𝑄), 𝑔 (𝐹 )

parameters based on the coverage of the parent input. Each child
is generated by performing one or more mutations on the parent
parameter sequence (Line 9). The mutated parameters are then used
to generate a concrete input using the provided generator (Line 10).
Afterwards, the system under test is executed with the generated
input, which yields the code coverage and the validity feedback
(Line 11). The validity feedback is stored in the variable result and
can be any of {Valid, Invalid, Failure}. In the case of Failure,
the current parameters are saved to the set of failures (Line 13).
Otherwise, the algorithm heuristically decides whether the current
parameters should be saved to the queue (i.e., if the parameters are
interesting enough to be further mutated) based on the observed
execution results (Line 15). This is by default the case if the input
is (i) valid, (ii) exercises new coverage, and (iii) represents an input
structure that has not been previously added to the queue. Finally,
the bookkeeping-data is updated (Line 18). This includes updating
the branch coverage and the set of unique coverage traces.

As described in Section 3.2, BeDivFuzz is able to distinguish be-
tween structure-changing and structure-preserving mutations. This
is done by performingmutations on either the structural parameters
𝜎𝑠 or on the value parameters 𝜎𝑣 . Performing structure-changing
mutations allows to search for new program behavior that is only
triggered if the input satisfies particular structural properties. In
contrast, structure-preserving mutations allow to test a specific
behavior of the code with different variants of the input (i.e., inputs
with the same abstract structure but different values).

In order to decide which type of mutation to perform, BeDivFuzz
keeps track of the types of mutations that have been performed on
a parameter sequence and observes whether the resulting input has
resulted in the execution of a unique trace. The following mutations
are then biased towards the mutation operator that is more likely
to produce unique execution traces, as illustrated in Algorithm 2.
Specifically, with a probability of 𝜖 , a random type of mutation
is performed. Otherwise, the mutation type is chosen based on
heuristic scores 𝑅𝑠 and 𝑅𝑣 for the structural and value mutations,
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respectively (Line 6). For a given mutation type 𝑥 , the score is
calculated as the fraction of inputs that have exercised a unique
trace (𝑈𝑥 ) out of all the inputs that were generated by the respective
mutation type (𝑁𝑥 ), i.e.:

𝑅𝑥 =
𝑈𝑥

𝑁𝑥
𝑥 ∈ {𝑠, 𝑣} (3)

Thus, we bias the selection of the mutation operator towards pro-
ducing inputs that diversely exercise particular behaviors, while
relying on the structural search heuristic in Algorithm 1 (Line 15)
to discover new behaviors.

Algorithm 2: Adaptive Mutation Strategy
Input : structural parameters 𝜎𝑠 , value parameters 𝜎𝑣 , exploration factor 𝜖
Output :mutated parameters 𝜎̃𝑠 , 𝜎̃𝑣

1 if uniformRandom() < 𝜖 then

2 if randomBoolean() then /* Mutate either of the params */
3 return (mutate(𝜎𝑠 ), 𝜎𝑣 )
4 else

5 return (𝜎𝑠 ,mutate(𝜎𝑣 ))
6 𝑅𝑠 , 𝑅𝑣 ← calculateScores() /* Score by mutation type (Eq. 4) */

7 if 𝑅𝑠 ≠ 𝑅𝑣 then /* Perform most promising mutation */
8 if 𝑅𝑠 > 𝑅𝑣 then

9 return (mutate(𝜎𝑠 ), 𝜎𝑣 ) /* Mutate structural params */

10 else

11 return (𝜎𝑠 ,mutate(𝜎𝑣 )) /* Mutate value params */

12 else

13 goto 2 /* Resort to random mutation */

3.4 A Metric for Behavioral Diversity

As part of this work, we are interested in establishing a notion of
behavioral diversity in the context of fuzz testing. In particular, we
propose to use Hill numbers (Section 2.2), or effective number of
species [17]. The inspiration for this metric stems from the STADS
(Software Testing and Analysis as Discovery of Species) framework
introduced by Böhme [6]. In this framework, Böhme links the sam-
pling process in an assemblage for species discovery to the process
of sampling from the program’s input space to discover particular
features of the input’s execution (e.g., covered branches, reached
program states). However, rather than using the framework to
estimate species discovery probabilities [6, 7], we build upon the
same connection between ecology and software testing by applying
an established biodiversity index — known as Hill numbers — to
quantify the behavioral diversity of a fuzzing campaign.

We apply this diversity measure to the context of fuzzing as fol-
lows. Consider a fuzzing campaign, where a fuzzer 𝐹 samples inputs
𝐼 to fuzz a program 𝑃 . Executing 𝑃 with an input 𝑖 ∈ 𝐼 results in a
trace 𝑡 (𝑖) that consists of the sequence of branches visited during
the execution. Each branch 𝑏 that has been covered by at least one
input 𝑖 can now be seen as a species. The abundance of a species
(i.e., of a covered branch 𝑏) can then be computed as the number
𝑐 (𝑏) of unique traces that have executed the branch 𝑏 (the branch
execution count). Given these measures, we can now quantify the
behavioral diversity of a fuzzing campaign as the Hill numbers
computed over the distribution of branch execution counts.

Definition 3.3 (Behavioral Diversity). Let 𝐼 be the set of inputs gen-
erated by a fuzzer during a fuzzing campaign, and let𝐶 : B ↦→ N>0

be a function that maps a covered branch 𝑏 ∈ B to its relative exe-
cution count over all unique traces. Then, the behavioral diversity
of order 𝑞 is defined as:

𝐵(𝑞) =
(∑︁
𝑏∈B

𝐶 (𝑏)𝑞
)1/(1−𝑞)

(4)

Intuitively, this measure quantifies the effective number of di-
versely covered branches, that is, the number of branches that were
equally often executed by diverse inputs (i.e., inputs with unique
traces). While 𝐵(0) is equal to the number of covered branches
(since it equally weights rare and common branches), 𝐵(1) weights
branches by their relative execution counts and can thus be inter-
preted as the ”effective number of typically covered branches”. 𝐵(2)
gives more weight to common branches and can be seen as the
”effective number of common branches”.

In the context of fuzzing, behavioral diversity considers the dis-
tribution of diverse branch execution counts in order to measure
the degree of exploration bias towards specific program behavior.
Higher numbers indicate that a fuzzer is diversely exploring more
branches, whereas low numbers mean that the fuzzer is spending
most of the resources exploring the same few behaviors. Low be-
havioral diversity is most evident for random blackbox-techniques,
which may be able to spuriously cover many branches, but ulti-
mately exercise the same likely code regions over and over again.
Especially for “unsuccessful” fuzz campaigns where no bugs are
found, behavioral diversity can provide valuable insights into the
progress of a fuzzer as a complementary metric to branch coverage.
For instance, practitioners may consider more diversely executed
branches as more reliable than less diversely executed ones, since
they have been tested more “thoroughly”. On the other hand, re-
searchers may tune their fuzzers to repeatedly target less diversely
executed branches in order to increase the overall confidence in
the reliability of the respective behavior.

4 EVALUATION

In this section, we evaluate the effectiveness of BeDivFuzz in gener-
ating inputs that exhibit diverse behavior.We compare our approach
against three techniques: RLCheck [35], Zest [32], and an imple-
mentation of Quickcheck [12] from the JQF [31] fuzzing framework.
In particular, we seek to answer the following research questions:
RQ1 Is BeDivFuzz able to effectively produce diverse valid inputs

for real-world benchmarks? (Section 4.2)
RQ2 Do the inputs generated by BeDivFuzz have a higher be-

havioral diversity compared to state-of-the-art techniques?
(Section 4.3)

RQ3 How does BeDivFuzz perform in terms of fault finding ca-
pabilities? (Section 4.4)

4.1 Study Design

Baseline Techniques. We compare against two state-of-the-art tech-
niques in generator-based testing, namely RLCheck [35] and Zest [32].
RLCheck uses reinforcement learning in order to automatically
learn a guide that leads the generator towards producing many
diverse valid inputs. Zest is a generator-based fuzzer that integrates
validity feedback into a coverage-guided search algorithm to effec-
tively cover the semantic analysis code. We also compare against
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a Java version of Quickcheck [12] by running Zest without code
coverage and validity feedback, as done in the original evaluation
of RLCheck. That is, Quickcheck performs random sampling of
inputs using the generator.

Experimental Subjects. Our evaluation is conducted on six real-
world benchmarks, namely Apache Ant, Apache Maven, Mozilla
Rhino, Google Closure Compiler, Oracle Nashorn, and Apache Tom-
cat. The first four subjects have been used in the original evaluations
of Zest [32] and RLCheck [35]; we add two additional subjects for
a broader benchmark. In addition, we have updated the subjects
to the latest versions available at the time when we conducted the
experiments. Inputs for Ant, Maven, and Tomcat are generated by
an XML generator, whereas Rhino, Closure, and Nashorn use a
JavaScript code generator.

Configuration. We run all baseline techniques with their default
configurations. In order to run Nashorn and Tomcat with RLCheck,
we use configuration files based on those provided for Rhino and
Maven by the original authors, respectively. For BeDivFuzz, we use
𝜖 = 0.2 as the probability to perform a randommutation. Further, we
provide results for two configurations of BeDivFuzz, whichwe refer
to as BeDivFuzz-structure and BeDivFuzz-simple. BeDivFuzz-
structure utilizes both structural mutations and analysis of input
structure novelty, whereas BeDivFuzz-simple only employs struc-
tural mutations. In order to make the input generators used by
Zest compatible with our technique, we manually extended them to
handle split parameter sequences and annotated the choice points
with the type of choice they produce. However, we note that the
latter could also be done automatically through data-flow analysis.

Implementation. We have implemented BeDivFuzz [4] as an exten-
sion of Zest in JQF [31]. JQF is a framework for generator-based
testing in Java and implements different fuzzing algorithms, includ-
ing the Zest algorithm and AFL-like fuzzing for Java programs.

Experimental Parameters. For the evaluation of RQ1 (input diver-
sity) and RQ2 (behavioral diversity), we run each experiment with
a timeout of 1 hour. The original evaluation of RLCheck [35] was
conducted with a timeout of 5 minutes, as the authors assumed
a property-based testing context where the generator is typically
executed only for a short time. While a 5 minute timeout may
seem short compared to common timeouts in fuzzing evaluations,
it should also be noted that collecting coverage metrics for black-
box methods (e.g., Quickcheck or RLCheck) is significantly more
expensive than for greybox methods (e.g., Zest or BeDivFuzz). In
particular, the inputs for blackbox techniques first need to be gen-
erated on the uninstrumented SUT until timeout, and subsequently
be replayed on the instrumented version of the SUT. This is neces-
sary to allow for a fair comparison against greybox methods, since
instrumentation adds additional overhead. However, this methodol-
ogy results in significantly longer experimental runtimes1. On the
other hand, coverage data may not be meaningful if timeouts are
too short, since coverage-guided algorithms typically need some
time to become effective. Thus, for the evaluation of RQ1 (input
diversity) and RQ2 (behavioral diversity), we extend the timeout for

1In our experiments, we have observed up to 50× longer runtimes when computing
coverage for Quickcheck and RLCheck.

each experiment to 1 hour. We further justify this decision by our
observation that coverage has plateaued in almost all experiments
after this timeout. However, for RQ3 (fault finding capabilities), we
extend the timeout to 24 hours, since evaluations that focus on bug
metrics should be performed with longer timeouts, as suggested
by Klees et al. [23]. To account for the variability of the results due
to randomness, we perform 30 repetitions. Statistical significance
is assessed using the Mann-Whitney 𝑈 test (also known as the
Wilcoxon rank-sum test) with 𝛼 = 0.01, as suggested by Arcuri and
Briand [1] for randomized algorithms.

As for hardware, we conducted all experiments on a server with
an Intel(R) Xeon(R) E7-4880 2.5GHz CPU and 1TB of RAM running
openSUSE Leap 15.

4.2 RQ1: Generating Diverse Valid Inputs

We answer RQ1 by assessing the number of diverse valid inputs gen-
erated by BeDivFuzz compared to the baseline techniques. Similar
to Reddy et al. [35], we consider diverse valid inputs as inputs that
exercise different traces, rather than inputs that are only unique on
the byte or string level. The results are visualized in Figure 3. The
left column shows for each benchmark subject the percentage of all
generated inputs that were diverse valid inputs, whereas the right
column depicts the total number of diverse valid inputs.

If we consider the percentages of generated diverse valid inputs,
the results indicate that BeDivFuzz is competitive with the current
state-of-the-art. For all benchmark subjects, both configurations
of BeDivFuzz outperform Zest and Quickcheck as they are able
to maintain a high percentage of diverse valid inputs and even
increase it over time for several subjects. However, in two out of six
subjects, RLCheck significantly outperforms BeDivFuzz, which is
most notable in the Maven benchmark where the mean percentage
of diverse valid inputs is about 6% and 10% higher compared to
BeDivFuzz-structure and BeDivFuzz-simple, respectively.

The plots for Ant show a high variability in the performance of
BeDivFuzz, which is due to the difficulty of finding the first valid
input for this subject. This indicates that BeDivFuzz can potentially
benefit from an initial valid seed input. The same applies to Zest,
which also further mutates invalid inputs by default, thus poten-
tially wasting resources by initially exploring the error handling
code of the SUT. On the other hand, the efficiency of RLCheck
allows it to quickly find a valid input and exploit the obtained
information to generate further diverse valid inputs.

On our newly added subjects Nashorn and Tomcat, RLCheck
does not perform as well as on the other benchmarks. This can
potentially be attributed to the fact that the new subjects have
very simple validity functions, while different behavior may only
be triggered by specific input structures. We assume that since
RLCheck only relies on the validity feedback, it is unable to learn
any meaningful policy as almost any generated input is valid, but
not necessarily diverse valid. As a result, RLCheck might be prone
to overfit to a valid, yet uninteresting space of inputs (with regard
to the triggered program behavior). In contrast to that, BeDivFuzz
also utilizes code coverage to identify whether an input with a
unique structure exercises interesting behavior or not.

While the results indicate that BeDivFuzz is highly effective
in generating diverse valid inputs, the total numbers (Figure 3,
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Figure 3: Percent (left) and absolute number (right) of di-

verse valid inputs (i.e., valid inputs with different traces).

right column) show that our approach is mostly limited by its
efficiency. Overall, BeDivFuzz only performs better than Zest in
terms of generating many diverse valid inputs. When comparing
both configurations of BeDivFuzz, BeDivFuzz-structure tends to
have a slight edge due to the added analysis of input structures, but
the differences are generally not significant. However BeDivFuzz,
is outperformed by both RLCheck and Quickcheck for most of
the benchmark subjects. This can be explained as follows. Like
Zest, BeDivFuzz requires the SUT to be instrumented in order
to collect code coverage. This results in a significant slowdown
of execution time (around 10–100× slower), effectively reducing
the total number of diverse valid inputs that can potentially be
generated. On the other hand, while RLCheck has a comparable
effectiveness to BeDivFuzz, the blackbox approach makes it much
more efficient. Nevertheless, this is an acceptable trade-off, since
our main focus is not on producing a large number of diverse valid
inputs. Instead, the overall goal of BeDivFuzz is to exercise diverse
behavior, which we evaluate in the following section.

4.3 RQ2: Diverse Execution of Program

Behavior

In this section, we seek to answer RQ2, that is, whether BeDiv-
Fuzz is able to generate test inputs that have a higher behavioral
diversity compared to the baseline techniques. We measure the
behavioral diversity by the behavioral diversity index 𝐵(𝑞) of order
𝑞, defined in Equation 4. In particular, we compare the behavioral
diversity indices for 𝑞 ∈ {0, 1, 2}, since in the field of ecology, Hill
numbers are usually reported for these orders as well. Recall that
the behavioral diversity 𝐵(𝑞) can be interpreted as follows:
𝑞 = 0: The total number of covered branches (i.e., branch coverage)
𝑞 = 1: The effective number of typically executed branches
𝑞 = 2: The effective number of commonly executed branches
The effective number of a set of covered branches can be seen as the
number of branches executed by the proportionally same number
of diverse inputs. We are mostly interested in the results for 𝐵(1)
and 𝐵(2), since they emphasize the relative execution counts of the
typical and more common branches, respectively.

The results are shown in Figure 4. From left to right, the columns
depict the behavioral diversity of increasing order 𝑞 (from 0 to
2). The first column shows for each subject and technique the
behavioral diversity of order 0, i.e., the total number of covered
branches. While RLCheck is able to generate the highest number
of diverse valid inputs (Section 4.3), it performs the worst in terms
of branch coverage. When comparing the other approaches, both
configurations of BeDivFuzz have covered the highest number of
branches in three out of six benchmarks (Ant, Maven, Nashorn),
with BeDivFuzz-simple additionally outperforming all other tech-
niques in Tomcat. However, Quickcheck outperforms BeDivFuzz
in the two remaining benchmarks (Rhino and Closure). Compar-
ing against Zest, BeDivFuzz is only significantly outperformed in
Closure, and also in Tomcat for BeDivFuzz-structure.

The second column of Figure 4 compares the different techniques
w.r.t. the 𝐵(1) metric, i.e., the effective number of ”typically” exe-
cuted branches. Here, a similar trend in the results can be observed.
While the relative performance of RLCheck remains the same, both
configurations of BeDivFuzz perform significantly better than all
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Figure 4: From left to right: Behavioral diversity of increasing order 0 to 2.
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baseline approaches in four out of six benchmarks (Maven, Rhino,
Closure, Nashorn). Most interestingly, when comparing against the
plots of the first column (𝐵(0), i.e., number of covered branches),
BeDivFuzz now outperforms both Quickcheck and Zest in Rhino
and Closure. In the remaining benchmarks (Ant and Tomcat), the
performance of Zest is comparable to BeDivFuzz. Another obser-
vation is that the 𝐵(1) value of BeDivFuzz tends to increase over
time, most noticeable on Ant, Rhino, and Closure. This indicates
that the inputs generated by BeDivFuzz not only diversely execute
a fixed set of behaviors. Instead, BeDivFuzz is able to continu-
ously increase the coverage of new behaviors while maintaining
the overall diversity of the triggered behavior. In contrast, the 𝐵(1)
metric even slightly decreases over time for Quickcheck in the Clo-
sure benchmark. A possible explanation for this observation is that
Quickcheck is prone to disproportionately often trigger the most
likely behaviors in the SUT. On the other hand, most of the other
covered branches may have been executed only a few times by
chance. This increasing ”unevenness” in executed behavior could
consequently result in a decline of the 𝐵(1) value.

The third column shows the results for the 𝐵(2) metric, i.e., the
effective number of commonly executed branches. Again, in four
out of six benchmarks (Maven, Rhino, Closure, Nashorn), BeDiv-
Fuzz performs significantly better than all baseline approaches. For
the Rhino and Closure benchmark, the difference between BeDi-
vFuzz and the baselines even increased compared to the results
of the 𝐵(1) metric (center column). That is, both configurations of
BeDivFuzz generate inputs that trigger ”common” behavior in a
more diverse manner compared to the baselines.

Throughout the experiments, when comparing the two configu-
rations of BeDivFuzz, we have observed that BeDivFuzz-structure
generally performs better for shorter timeouts (≤ 5 minutes). Since
BeDivFuzz-structure only saves inputs to the queue if they ex-
hibit a new input structure, the queue of saved inputs contains
less, but more (structurally) diverse inputs. As a result, BeDivFuzz-
structure initially explores more diverse behavior, but the plain
adaptive mutation strategy of BeDivFuzz-simple seems to be suf-
ficient to eventually discover these behaviors as well. Thus, the
more explorative nature of BeDivFuzz-structure may be more
suitable for contexts where runtimes are required to be short (e.g.,
property-based testing).

4.4 RQ3: Finding Faults

Table 1 shows the list of crashes that were discovered after a time-
out of 24 hours, deduplicated by benchmark and exception type (as
done in the evaluations of Zest and RLCheck). To answer RQ3, we
compare the different approaches concerning the discovery times
and the reliability of triggering a particular crash. The results in-
dicate that RLCheck performs the worst in terms of fault finding
capabilities, as this approach has triggered the least number of
crashes. In contrast, Zest performs the best as it has found one addi-
tional crash compared to BeDivFuzz and Quickcheck, though this
crash was only found in 16% of the trials. This is is most likely due
to the coverage-guided algorithm of Zest that allows to effectively
explore deeper paths in the semantic analysis stage compared to
Quickcheck. On the other hand, while BeDivFuzz also leverages

coverage guidance, the approach focuses more on diversely execut-
ing many different behaviors through controlled mutations. Thus,
BeDivFuzz may miss interesting edge cases that are more likely to
be produced by completely random mutations.

Comparing the metrics for the bugs found by BeDivFuzz, Zest,
and Quickcheck, it can be noted that Quickcheck finds the crashes
faster and more reliably. The crashes in Closure and Rhino are typ-
ically found within minutes by Quickcheck, while BeDivFuzz and
Zest require hours to discover most of the crashes. This result can
potentially be explained by results in Section 4.3, which show that
Quickcheck already achieved high coverage after a few minutes in
these subjects. In contrast, the search algorithms of BeDivFuzz and
Zest might have prioritized exploring other parts of the program,
before eventually discovering the crash-inducing behaviors.

Interestingly, BeDivFuzz-structure tends to find crashes faster
than BeDivFuzz-simple, which suggests the importance of the
structural novelty heuristic for fault finding.

4.5 Threats to Validity

Internal Validity. To avoid potential systematic errors that could
pose threats to internal validity, we have designed our experiments
(replication count, timeout, etc.) based on the guidelines provided by
Klees et al. [23]. Additionally, we have reused existing and available
implementations of the baseline fuzzers with conforming parameter
settings from the evaluation of RLCheck [35]. The parameters for
BeDivFuzz are not tuned; thus we can provide a fair and realistic
comparative evaluation of the different approaches.
External Validity. Our evaluation focuses only on six programs
(Ant, Maven, Rhino, Closure, Nashorn, and Tomcat) with two differ-
ent input formats, namely XML and JavaScript. Whether our results
can be generalized to other programs and other input formats is
a threat to external validity. However, the programs under test
represent complex, long-living, and mature programs with a wide-
spread adoption. Thus, we argue that an application of BeDivFuzz
to similar programs would produce similar results.
Construct Validity. The main question towards construct validity
is whether the Hill numbers [17] for species diversity are actually
a good metric to evaluate the behavioral diversity of the covered
branches in a fuzzing campaign. We argue that behavioral diversity
is given not only if many different behaviors are covered (i.e., a
high branch coverage), but each of the different behaviors is equally
covered by many diverse inputs. Utilizing Hill numbers as a metric
specifically accounts for the possible variations in the diverse exe-
cution of different behaviors, which may differ greatly depending
on the chosen fuzzing technique as shown in our evaluation.

5 RELATEDWORK

Diversity in Fuzzing and Search-based Test Case Generation

There have been several fuzzing and search-based test case gen-
eration approaches that target diversity as one of their objectives.
These approaches can be classified into approaches that a) aim to
achieve diversity in the input space [5, 11, 28, 39, 46] or b) in the
covered behavior of the program under test when executing the test
cases. One of the earlier approaches in the first category is Adaptive
Random Testing (ART) [11], a black box testing approach that aims
to distribute the test cases over the entire input space. Technically,
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Crash-ID BeDiv-simple BeDiv-structure Zest Quickcheck RLCheck
closure.StringIndexOutOfBoundsException 645 (76%) 473 (73%) 82 (100%) 3 (100%) -
closure.NullPointerException 425 (100%) 347 (100%) 149 (100%) 4 (100%) 7 (100%)
closure.RuntimeException 121 (100%) 88 (100%) 5 (100%) <1 (100%) 6 (100%)
rhino.ArrayIndexOutOfBoundsException - - 960 (16%) - -
rhino.ClassCastException 650 (40%) 371 (33%) 606 (56%) 192 (100%) -
rhino.IllegalStateException 1 (100%) 2 (100%) 1 (100%) <1 (100%) <1 (100%)
rhino.NullPointerException 11 (100%) 7 (100%) 5 (100%) <1 (100%) -
rhino.VerifyError 543 (80%) 452 (83%) 212 (100%) 6 (100%) 9 (100%)
nashorn.AssertionError 44 (100%) 48 (100%) 487 (66%) 125 (100%) -

Table 1: Average time (in minutes) and reliability of triggering a particular crash.

ART selects the next test case that maximizes the minimal distance
to all already executed test cases. A similar approach is applied in
the tool DIG [5] for testing web-based applications. The distance
of test cases is computed based on the sequences of actions that
traverse the navigational model of the web application. In search-
based testing, Sapienz𝑑𝑖𝑣 [46] aims to maintain and improve a set
of test cases for mobile applications that trigger diverse inputs,
measured by the distance of test input sequences. The “Uncommon
inputs” strategy from Soremekun et al. [39] creates inputs based
on an inverted probabilistic grammar. If the original probabilistic
grammar is learned from a set of common samples, the hypothesis
is that inverting the probabilities would lead to uncommon and
more diverse inputs.

BeDivFuzz belongs to the second category of approaches since
we focus on behavioral diversity and achieving input diversity as
a byproduct. A first step towards behavioral diversity is taken in
any greybox fuzzing approach (e.g., [2, 8, 9, 15, 24–26, 43, 53]) that
aim to maximize some coverage metric in the SUT, such as branch
or statement coverage. The feedback loop in these greybox fuzzing
approaches implements a novelty search that values test inputs that
provide additional coverage. This feedback loop is also present in
hybrid fuzzing approaches (e.g., [34, 42, 52]) that combine greybox
fuzzing with symbolic execution [10, 13, 22, 50] or concolic test-
ing [36]. Furthermore, the general idea of greybox fuzzing is taken
a step further in FairFuzz [24], VUzzer [34], and TortoiseFuzz [49].
FairFuzz is an AFL [53] extension with the goal of triggering rare
branches. The main idea of FairFuzz is to learn mutation masks and
areas that have a higher chance of hitting these rare branches. Tor-
toiseFuzz and VUzzer instead prioritize exploration of code regions
with a high chance of containing a vulnerability. In the case of
VUzzer, the goal is to cover error-handling code, and TortoiseFuzz
aims to cover memory access operations.

In contrast to all these approaches, we argue that just hitting
a branch once does not provide behavioral diversity. The existing
approaches basically aim to optimize the 𝐵(0) metric (i.e., branch
coverage) in Figure 4, whereas BeDivFuzz also provides behavioral
diversity and scores well on the 𝐵(1) and 𝐵(2) metrics.

Fuzzing and Generation of Valid Inputs The generation of
syntactically and semantically valid inputs has always been the tar-
get of modern fuzzing approaches. Concerning syntactically correct
inputs, the common approach is to use models to describe the input
structure. Examples are input specifications [20, 21, 44] or gram-
mars [2, 14, 16, 18, 30, 39, 48]. However, having just syntactically

correct inputs is often not enough, and to explore deeper regions
of the SUT, semantic validity of the inputs is required. Zest [32]
utilizes validity and code coverage feedback to produce inputs with
high semantic coverage. BeDivFuzz is based on the same feedback
mechanism as Zest, but extends it with novel structural mutation
operators and a structure-aware fuzzing heuristic. RLCheck [35]
uses reinforcement-learning to learn a policy to guide the generator
towards high input diversity. Similarly, BeDivFuzz automatically
adapts its mutation strategy based on the received feedback. While
our approach is built on top of these approaches, the main distin-
guishing factor is that we also aim to produce diverse behavioral
inputs to have a more systematic exploration of the SUT’s behavior.

6 CONCLUSION AND FUTUREWORK

In this paper, we have described an approach to generate test in-
puts with high behavioral diversity. That is, our approach does
not only aim to cover as many behaviors as possible, but also to
diversely execute the different behaviors. The key to our approach
is to distinguish between structure-changing mutations that allow
to search for new behaviors triggered by specific input structures,
and structure-preserving mutations to diversely execute a particular
behavior. This method is complemented by an adaptive mutation
strategy and a new fuzzing heuristic that is based on the structural
novelty of an input. We implemented this approach in BeDivFuzz,
and show that it outperforms the current state-of-the-art w.r.t. to a
novel measure of behavioral diversity that is inspired by a popular
biodiversity metrics in ecology — Hill-numbers. In future work, we
would like to provide guarantees for our approach by evaluating
measures such as the residual risk [7] and reliability of a SUT after
we terminate a fuzzing campaign.
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